Kubiya transforms common operational tasks from time-consuming manual processes into intelligent, automated workflows. Here are the most impactful use cases teams implement, with concrete examples and benefits.
DevOps Automation
Application Deployments
Transform deployment processes from error-prone manual steps to reliable, auditable workflows:
Traditional Process Kubiya Automation Manual deployment steps (45-90 minutes):
Developer requests deployment in Slack
DevOps engineer validates readiness
Manual kubectl commands or CI/CD trigger
Manual monitoring of health checks
Manual rollback if issues detected
Status updates scattered across tools
Real example workflow:
from kubiya_workflow_sdk import Workflow, Step
# Deployment workflow with proper validation and rollback
deployment_workflow = Workflow(
name = "microservice-deployment" ,
description = "Deploy microservice with health checks and rollback"
)
# Pre-deployment validation
deployment_workflow.add_step(
Step( "validate-build" )
.tool( "github" )
.command( "gh api repos/myorg/user-service/actions/runs --jq '.workflow_runs[0].conclusion'" )
.condition( "== 'success'" )
)
# Deploy to staging first
deployment_workflow.add_step(
Step( "deploy-staging" )
.tool( "kubectl" )
.command( "kubectl set image deployment/user-service user-service=user-service:v2.3.1 -n staging" )
.depends([ "validate-build" ])
)
# Health check
deployment_workflow.add_step(
Step( "health-check" )
.tool( "curl" )
.command( "curl -f http://user-service.staging.svc.cluster.local/health" )
.retry( 3 )
.depends([ "deploy-staging" ])
)
# Production deployment
deployment_workflow.add_step(
Step( "deploy-production" )
.tool( "kubectl" )
.command( "kubectl set image deployment/user-service user-service=user-service:v2.3.1 -n production" )
.depends([ "health-check" ])
)
Infrastructure Provisioning
Automate infrastructure changes with safety and consistency:
Common scenarios:
โSpin up a development environment for the mobile teamโ
โScale production cluster capacity for Black Friday trafficโ
โCreate disaster recovery environment in us-east-2โ
โDecommission old staging resources to reduce costsโ
# Auto-scaling workflow example
name : traffic-surge-response
trigger :
type : metric_threshold
condition : "avg(cpu_utilization) > 75% for 10 minutes"
steps :
- name : analyze-traffic-patterns
tool : datadog-analyzer
- name : provision-additional-nodes
tool : terraform-executor
inputs :
action : apply
var_file : surge-scaling.tfvars
- name : update-load-balancer
tool : aws-alb
inputs :
targets : ${provision-additional-nodes.new_instances}
- name : notify-team
tool : slack
message : "๐ Auto-scaled cluster for traffic surge: +${new_node_count} nodes"
Release Management
Coordinate complex releases across multiple services and teams:
Multi-service release workflow:
name : quarterly-release-q2-2024
description : "Coordinated release across 12 microservices"
phases :
- name : pre-release-validation
parallel_checks :
- database-migration-tests
- api-compatibility-validation
- security-vulnerability-scans
- performance-regression-tests
- name : staged-rollout
sequence :
- services : [ auth-service , user-service ] # Foundation services first
strategy : blue-green
- services : [ payment-service , order-service ] # Business logic
strategy : canary
depends_on : [ auth-service , user-service ]
- services : [ notification-service , analytics-service ] # Supporting services
strategy : rolling
depends_on : [ payment-service , order-service ]
- name : post-release-verification
checks :
- end-to-end-user-journey-tests
- business-metrics-validation
- error-rate-monitoring
- performance-benchmarks
Site Reliability Engineering (SRE)
Accelerate mean time to resolution (MTTR) with intelligent automation:
Before Kubiya MTTR: 45-120 minutes
Manual log collection from multiple systems
Context switching between monitoring tools
Tribal knowledge required for diagnosis
Manual remediation steps
With Kubiya MTTR: 10-25 minutes
Automated evidence collection
AI-assisted root cause analysis
Context-aware remediation suggestions
One-click remediation execution
Example incident response workflow:
PagerDuty Alert: "Payment API 5xx errors spiking"
โ
Kubiya automatically:
1. Collects logs from payment service pods
2. Queries database connection metrics
3. Checks recent deployments and changes
4. Analyzes error patterns with AI
5. Suggests remediation: "Scale payment-db connection pool"
6. Presents one-click remediation options
Capacity Planning & Scaling
Proactive resource management based on usage patterns and business events:
name : black-friday-capacity-preparation
schedule : "October 1st annually"
steps :
- name : analyze-historical-traffic
tool : traffic-analyzer
inputs :
timeframe : "last 3 black fridays"
services : [ "web-frontend" , "api-gateway" , "payment-service" ]
- name : forecast-capacity-needs
tool : ml-forecaster
inputs :
historical_data : ${analyze-historical-traffic.patterns}
growth_rate : 15% # Expected YoY growth
- name : pre-scale-infrastructure
tool : multi-cloud-scaler
inputs :
aws_scaling : ${forecast-capacity-needs.aws_requirements}
gcp_scaling : ${forecast-capacity-needs.gcp_requirements}
- name : validate-scaling
tool : load-tester
inputs :
traffic_multiplier : ${forecast-capacity-needs.peak_multiplier}
- name : create-runbook
tool : documentation-generator
inputs :
scaling_decisions : ${pre-scale-infrastructure.actions}
validation_results : ${validate-scaling.performance_metrics}
Chaos Engineering & Testing
Automated resilience testing with safe failure injection:
name : monthly-chaos-testing
description : "Automated resilience validation"
experiments :
- name : database-connection-failure
target : payment-service
failure_type : network_partition
blast_radius : 25% # Only affect 25% of instances
duration : 5m
success_criteria :
- circuit_breaker_triggered : true
- fallback_mechanism_activated : true
- user_impact : < 0.1% # Less than 0.1% user errors
- name : memory-pressure-test
target : recommendation-engine
failure_type : memory_leak_simulation
ramp_up : gradual # Increase memory pressure slowly
abort_conditions :
- pod_restart_required : true
- response_latency : > 2000ms
Automated Runbooks
Convert tribal knowledge into executable, maintainable automation:
Database performance investigation runbook:
name : database-performance-investigation
trigger :
alert : "Database query latency > 500ms for 5 minutes"
investigation_steps :
- name : collect-slow-queries
tool : postgres-analyzer
outputs : [ slow_query_log , query_plans ]
- name : check-connection-pool
tool : pgbouncer-metrics
outputs : [ pool_utilization , wait_times ]
- name : analyze-resource-usage
tool : system-metrics
inputs :
resources : [ cpu , memory , disk_io , network ]
timeframe : 1h
- name : generate-recommendations
tool : ai-analyzer
inputs :
slow_queries : ${collect-slow-queries.slow_query_log}
resource_metrics : ${analyze-resource-usage.metrics}
pool_metrics : ${check-connection-pool.utilization}
automated_remediation :
- condition : "connection_pool_exhausted"
action : scale_connection_pool
parameters :
new_pool_size : ${current_pool_size * 1.5}
- condition : "missing_index_detected"
action : create_maintenance_ticket
parameters :
priority : high
description : "Index needed: ${generate-recommendations.suggested_indexes}"
Self-Service Workflows
Enable development teams with safe, governed self-service capabilities:
Developer self-service scenarios:
โCreate a preview environment for PR #1234โ
โRun end-to-end tests against stagingโ
โScale down my development environment overnightโ
โGet performance metrics for my service over the last weekโ
name : developer-environment-management
permissions :
- role : developer
allowed_environments : [ dev , staging ]
restricted_operations : [ production_access , resource_deletion ]
templates :
- name : create-preview-env
description : "Spin up isolated environment for feature testing"
inputs :
- name : branch_name
type : string
required : true
- name : services_to_deploy
type : array
default : [ "frontend" , "api" ]
- name : run-test-suite
description : "Execute comprehensive test suite"
inputs :
- name : test_type
type : select
options : [ "unit" , "integration" , "e2e" , "performance" ]
- name : target_environment
type : select
options : [ "dev" , "staging" ]
Compliance & Security Automation
Automate security checks and compliance reporting:
name : security-compliance-scan
schedule : "daily at 2 AM"
scans :
- name : vulnerability-assessment
tool : trivy-scanner
targets : [ container-images , kubernetes-manifests ]
- name : configuration-drift-check
tool : config-validator
policies : [ cis-benchmarks , company-policies ]
- name : access-review
tool : rbac-analyzer
checks : [ unused-permissions , overprivileged-accounts ]
- name : secret-scanning
tool : secret-scanner
repositories : [ all-active-repos ]
reporting :
- format : pdf
recipients : [ security-team@company.com , compliance@company.com ]
- format : dashboard
url : https://security-dashboard.company.com
- format : jira_tickets
condition : critical_vulnerabilities_found
assignee : security-team
Cost Optimization
Automated resource management to control cloud spending:
name : cost-optimization-automation
triggers :
- schedule : "weekdays at 7 PM" # Scale down after hours
- metric : "monthly_spend > budget_threshold"
actions :
- name : scale-down-dev-environments
condition : "time.hour >= 19" # After 7 PM
tool : multi-environment-scaler
inputs :
environments : [ dev , qa , staging ]
scale_factor : 0.3 # Scale to 30% capacity
- name : identify-unused-resources
tool : resource-analyzer
age_threshold : 30d # Unused for 30+ days
- name : rightsizing-recommendations
tool : rightsizing-analyzer
lookback_period : 2w
utilization_threshold : 20% # Under 20% utilization
- name : reserved-instance-optimizer
tool : ri-optimizer
savings_threshold : 15% # Only suggest if 15%+ savings
notifications :
- type : slack
channel : "#platform-cost-alerts"
message : "๐ฐ Monthly savings achieved: $${cost_savings}"
- type : executive-report
recipients : [ cto@company.com , cfo@company.com ]
frequency : monthly
ChatOps & Collaboration
Slack/Teams Integration
Bring automation directly into team communication channels:
Slash Commands /kubiya deploy frontend v2.1.0 to staging
Natural Language โCan you check if the payment service is healthy?โ
Interactive Buttons Click to approve deployments or execute runbooks
Status Updates Automated progress updates and completion notifications
Example ChatOps integration:
name : slack-ops-integration
channels :
- name : "#deployments"
permissions : [ deploy , rollback , status-check ]
environments : [ staging , production ]
- name : "#incidents"
permissions : [ investigate , remediate , escalate ]
auto_response : true
- name : "#platform-requests"
permissions : [ create-environment , run-tests , access-logs ]
approval_required : false
interactive_commands :
- trigger : "/deploy {service} {version} to {environment}"
workflow : service-deployment
confirmations :
- condition : environment == "production"
message : "โ ๏ธ This will deploy to production. Continue?"
- trigger : "investigate {service} performance"
workflow : performance-investigation
auto_execute : true
- trigger : "scale {service} to {replicas} replicas"
workflow : service-scaling
safety_checks : [ resource-limits , blast-radius ]
Advanced Use Cases
Multi-Cloud Orchestration
Manage resources across different cloud providers seamlessly:
name : disaster-recovery-failover
description : "Automated failover from AWS to GCP"
steps :
- name : detect-aws-outage
tool : multi-cloud-health-checker
condition : "aws_availability < 90%"
- name : backup-aws-data
tool : aws-backup-service
parallel : true # Run while switching traffic
- name : scale-up-gcp-infrastructure
tool : gcp-autoscaler
inputs :
target_capacity : ${aws_current_capacity}
regions : [ "us-central1" , "us-east1" ]
- name : migrate-database
tool : database-replicator
source : aws_rds_primary
destination : gcp_cloud_sql_replica
- name : switch-dns
tool : route53-updater
inputs :
records : [ "api.company.com" , "app.company.com" ]
new_targets : ${scale-up-gcp-infrastructure.endpoints}
- name : notify-stakeholders
tool : multi-channel-notifier
channels : [ slack , email , sms , status-page ]
message : "๐ DR failover completed: AWS โ GCP"
Compliance Automation
Maintain regulatory compliance through automated processes:
name : gdpr-data-retention-compliance
schedule : "monthly on 1st day"
steps :
- name : identify-expired-data
tool : data-retention-scanner
policies :
user_activity_logs : 2_years
payment_records : 7_years
analytics_data : 1_year
- name : data-anonymization
tool : gdpr-anonymizer
data_types : [ user_profiles , behavioral_data ]
anonymization_method : k_anonymity
- name : secure-deletion
tool : secure-delete-service
confirmation_required : true
audit_trail : complete
- name : compliance-reporting
tool : compliance-reporter
outputs : [ gdpr_compliance_certificate , audit_log ]
recipients : [ dpo@company.com , legal@company.com ]
Measuring Success
Key Metrics Teams Track
Operational Efficiency
70% reduction in deployment time
85% fewer manual interventions
40% faster incident resolution
90% reduction in environment setup time
Quality & Reliability
95% deployment success rate
60% fewer production incidents
99.9% automated workflow reliability
Zero security policy violations
Team Productivity
4 hours/week saved per developer
80% of deployments are self-service
50% reduction in after-hours escalations
3x faster onboarding for new team members
Cost Optimization
25% reduction in cloud spend
90% reduction in idle resources
60% better resource utilization
ROI achieved within 3 months
Getting Started
Ready to implement these use cases? Start with the patterns most relevant to your teamโs pain points:
Success Pattern : Most teams start with read-only operations (monitoring, status checks) to build confidence, then gradually automate write operations (deployments, scaling) as they see the reliability and audit capabilities.