Kubiya MCP Quickstart
Connect any AI assistant to the first LLM-native automation platform in 5 minutes. Experience True Serverless Container Tools and LLM-Friendly DAG Workflows that run entirely on your infrastructure with zero dependencies.
⚡ Prerequisites
- Kubiya API key (get one here)
- No other dependencies - the Kubiya CLI is self-contained!
🚀 Installation
# Install Kubiya CLI (works on macOS, Linux, Windows)
curl -fsSL https://raw.githubusercontent.com/kubiyabot/cli/main/install.sh | bash
# Verify installation
kubiya --version
# Set your API key
export KUBIYA_API_KEY="kb-your-api-key-here"
🎯 Method 1: Claude Desktop (Most Popular)
1. Start the MCP Server
# Start the MCP server (runs in background)
kubiya mcp serve
You’ll see:
🚀 Kubiya MCP Server starting...
📡 Mode: stdio (for AI assistants)
🔑 API Key: ✅ Configured
🛠️ Tools: 21+ LLM-optimized tools available
📊 Workflows: LLM-friendly DAG engine ready
🏠 Infrastructure: Your runners detected
🛡️ Policies: Disabled (set KUBIYA_OPA_ENFORCE=true to enable)
✅ Ready for LLM connections
Add this to your Claude Desktop config file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"kubiya": {
"command": "kubiya",
"args": ["mcp", "serve"],
"env": {
"KUBIYA_API_KEY": "kb-your-api-key-here"
}
}
}
}
3. Restart Claude Desktop
Restart Claude Desktop and you’ll see the 🔌 MCP icon - Kubiya is connected!
4. Try It Out
In Claude, ask:
“Can you list the available runners and check their health status?”
“Create a tool that checks disk space and send me the results”
“Execute a kubectl command to get all pods in the cluster”
🎯 Method 2: Cursor IDE
Add to your Cursor settings (.cursor-settings.json
):
{
"mcp.servers": {
"kubiya": {
"command": "kubiya",
"args": ["mcp", "serve"],
"env": {
"KUBIYA_API_KEY": "kb-your-api-key-here"
}
}
}
}
2. Use in Cursor
Open the Composer and ask:
“Use Kubiya to deploy my application to staging”
“Check the health of our Kubernetes cluster using Kubiya tools”
🎯 Method 3: Custom LLM Integration
For custom applications, use the MCP protocol directly:
import asyncio
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import StdioServerTransport
async def use_kubiya():
# Connect to Kubiya MCP server
server_params = StdioServerParameters(
command="kubiya",
args=["mcp", "serve"],
env={"KUBIYA_API_KEY": "kb-your-key"}
)
async with StdioServerTransport(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize connection
await session.initialize()
# List available tools
tools = await session.list_tools()
print(f"Available tools: {[t.name for t in tools.tools]}")
# Execute a simple tool
result = await session.call_tool(
"execute_tool",
{
"tool_name": "hello-world",
"args": {"content": "echo 'Hello from Kubiya!'"},
"runner": "auto"
}
)
print(result.content)
# Run it
asyncio.run(use_kubiya())
🛠️ What You Can Do Now
# In Claude/AI assistant:
"Execute a Python script that analyzes this CSV data"
# Kubiya will:
# 1. Create a Python container
# 2. Run your analysis script
# 3. Return results with live streaming
2. Manage Infrastructure
# In your AI:
"Check the health of our Kubernetes cluster and restart any failed pods"
# Kubiya executes:
# 1. kubectl get pods --all-namespaces --field-selector=status.phase=Failed
# 2. kubectl delete pod <failed-pods>
# 3. kubectl get pods --watch
3. Run Workflows
# Natural language request:
"Deploy version 2.1.0 to staging, run tests, and promote to production if successful"
# Kubiya handles the entire pipeline:
# 1. docker build -t app:2.1.0
# 2. kubectl apply -f k8s/staging/
# 3. Run integration tests
# 4. If tests pass: kubectl apply -f k8s/production/
4. Data Processing
# Ask your AI:
"Process the sales data from S3, clean it, and load it into our data warehouse"
# Kubiya pipeline:
# 1. Download from S3
# 2. pandas/numpy processing
# 3. Data validation
# 4. Load to warehouse
# 5. Data quality checks
🚀 Advanced Configuration
For full platform management capabilities:
# Enable platform APIs (runner management, etc.)
kubiya mcp serve --allow-platform-apis
This enables additional tools:
create_runner
- Create new runners
delete_runner
- Remove runners
create_integration
- Add integrations
create_source
- Add tool sources
Enable Policy Enforcement
For enterprise security:
# Enable OPA policy enforcement
export KUBIYA_OPA_ENFORCE=true
kubiya mcp serve --allow-platform-apis
This adds policy validation before executing any tool or workflow.
Custom Configuration
Create ~/.kubiya/mcp-server.json
:
{
"allow_platform_apis": true,
"enable_opa_policies": true,
"whitelisted_tools": [
{
"name": "Safe kubectl",
"tool_name": "kubectl",
"description": "Read-only Kubernetes access",
"integrations": ["k8s/readonly"]
}
]
}
🎯 Real-World Examples
DevOps Assistant
You: “Our application seems slow, can you investigate?”
AI + Kubiya:
- Checks application metrics
- Analyzes logs for errors
- Examines resource usage
- Identifies bottlenecks
- Suggests optimizations
Data Engineering Helper
You: “Process today’s user analytics and update the dashboard”
AI + Kubiya:
- Extracts data from multiple sources
- Runs ETL transformations
- Validates data quality
- Updates data warehouse
- Refreshes BI dashboards
Security Operations
You: “Check for any security issues in our infrastructure”
AI + Kubiya:
- Scans for vulnerabilities
- Checks access controls
- Reviews audit logs
- Validates compliance
- Generates security report
The Kubiya MCP server exposes 21+ powerful tools:
Core Execution
execute_tool
- Run any containerized tool
create_on_demand_tool
- Build custom tools on-the-fly
execute_workflow
- Run complete workflows
execute_whitelisted_tool
- Run pre-approved tools
list_runners
- List execution infrastructure
check_runner_health
- Monitor system health
find_available_runner
- Auto-select optimal runners
list_agents
- Discover AI agents
chat_with_agent
- Multi-turn conversations
list_sources
- Browse tool repositories
execute_tool_from_source
- Run tools from Git repos
discover_source
- Preview tools before use
list_integrations
- See available integrations
Knowledge & Security
search_kb
- Search organizational knowledge
list_kb
- Browse documentation
list_secrets
- View available credentials
🔍 Troubleshooting
Common Issues
-
MCP Connection Failed
# Check if server is running
kubiya mcp serve --debug
# Verify API key
echo $KUBIYA_API_KEY
-
No Tools Available
# Make sure API key is valid
kubiya runner list # Should show available runners
# Check configuration
cat ~/.kubiya/mcp-server.json
-
Permission Denied
# Check if policies are blocking execution
export KUBIYA_OPA_ENFORCE=false
# Or test permissions
kubiya policy test-tool --tool kubectl --args '{"command": "get pods"}'
Debug Mode
Enable detailed logging:
# Start with debug logging
kubiya --debug mcp serve
# Or via environment
export LOG_LEVEL=DEBUG
kubiya mcp serve
🎯 Next Steps
🆘 Getting Help
🎉 Congratulations! You’ve connected your AI assistant to the full power of Kubiya. Your AI can now execute tools, manage infrastructure, run workflows, and handle complex automation tasks with enterprise-grade security and reliability.
Responses are generated using AI and may contain mistakes.