Unlike traditional agent frameworks that require complex setups, Kubiya’s inline agents are:
Just workflow steps - No separate agent infrastructure
Function-based - Agents call tools through simple function interfaces
Context-aware - Access workflow state and previous outputs
Serverless - No always-on processes consuming resources
Integrated - Part of your workflow DAG, not external
Copy
Ask AI
# Serverless agent as a workflow step.step("intelligent-analysis").inline_agent( message="Analyze system health and recommend actions", agent_name="sre-assistant", ai_instructions="You are an SRE expert. Use the provided tools to gather metrics.", # Agent uses function calling to execute tools tools=[ { "name": "get_cpu_usage", "type": "function", "description": "Get current CPU usage across pods", "implementation": "kubectl top pods | awk '{print $2}'" }, { "name": "check_error_logs", "type": "function", "description": "Count errors in application logs", "implementation": "kubectl logs -l app=myapp | grep ERROR | wc -l" } ], runners=["kubiya-hosted"] # Serverless execution).output("SRE_ANALYSIS")
import logging# Enable ADK agent logginglogging.getLogger("kubiya_workflow_sdk.providers.adk.agents").setLevel(logging.DEBUG)# Or specific agentslogging.getLogger("kubiya_workflow_sdk.providers.adk.agents.generator").setLevel(logging.DEBUG)
async for event in adk.compose(task="...", stream=True, include_agent_events=True): if event["type"] == "agent_event": agent = event["agent"] status = event["status"] print(f"[{agent}] {status}")
Unlike traditional agent frameworks that require complex setups, Kubiya’s inline agents are:
Just workflow steps - No separate agent infrastructure
Function-based - Agents call tools through simple function interfaces
Context-aware - Access workflow state and previous outputs
Serverless - No always-on processes consuming resources
Integrated - Part of your workflow DAG, not external
Copy
Ask AI
# Serverless agent as a workflow step.step("intelligent-analysis").inline_agent( message="Analyze system health and recommend actions", agent_name="sre-assistant", ai_instructions="You are an SRE expert. Use the provided tools to gather metrics.", # Agent uses function calling to execute tools tools=[ { "name": "get_cpu_usage", "type": "function", "description": "Get current CPU usage across pods", "implementation": "kubectl top pods | awk '{print $2}'" }, { "name": "check_error_logs", "type": "function", "description": "Count errors in application logs", "implementation": "kubectl logs -l app=myapp | grep ERROR | wc -l" } ], runners=["kubiya-hosted"] # Serverless execution).output("SRE_ANALYSIS")
import logging# Enable ADK agent logginglogging.getLogger("kubiya_workflow_sdk.providers.adk.agents").setLevel(logging.DEBUG)# Or specific agentslogging.getLogger("kubiya_workflow_sdk.providers.adk.agents.generator").setLevel(logging.DEBUG)
async for event in adk.compose(task="...", stream=True, include_agent_events=True): if event["type"] == "agent_event": agent = event["agent"] status = event["status"] print(f"[{agent}] {status}")